Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 8 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 24 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 14 marks.

Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT-I
Computer Fundamentals: Definition, Block Diagram along with Computer components, characteristics & classification of computers, hardware & software, types of software, firmware.
Planning the Computer Program: Concept of problem solving, Problem definition, Program design, Debugging, Types of errors in programming, Documentation.
Techniques of Problem Solving: Flowcharting, decision table, algorithms ,Structured programming concepts, Programming methodologies viz. top-down and bottom-up programming.

UNIT-II
Searching, Sorting, and Merging: Linear & Binary Searching, Bubble, Selection, and Insertion Sorting, Merging.
Overview of C: History of C, Importance of C, Structure of a C Program.
Elements of C: C character set, identifiers and keywords, Data types, Constants and Variables.
Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators and their hierarchy & associativity.

UNIT-III
Input/output: Unformatted & formatted I/O function in C.
Control statements: Sequencing, Selection: if and switch statement; alternation, Repetition: for, while, and do-while loop; break, continue, goto.
Functions: Definition, prototype, passing parameters, recursion.
Storage classes in C: auto, extern, register and static storage class, their scope, storage, & lifetime.

UNIT-IV
Arrays: Definition, types, initialization, processing an array, passing arrays to functions, Strings.
Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.
Structure & Union: Definition, processing, Structure and pointers, passing structures to functions.
Data files: Opening and closing a file, I/O operations on files, Error handling during I/O operation, Random access to files.

Text Books:
2. Dromey, R.G., How to Solve it By Computer, PHI

Reference Books:
2. Yashwant Kanetker, Let us C, BPB
4. Leon, Alexis & Leon, Mathews, Introduction to Computers, Leon Tech World
5. Rajaraman, V., Fundamentals of Computers, PHI
6. Rajaraman, V., Computer Programming in C, PHI
MCA-102 COMPUTER ORGANIZATION

Maximum marks: 100
Time: 3 hours

External: 80
Internal: 20

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 8 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 24 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 14 marks.
Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT-I
Information Representation: Number systems, BCD codes, Character codes – ASCII, EBCDIC, Unicode, Error Detecting and Correcting codes, Fixed-point and Floating-point representation of numbers. Binary arithmetic, Booths multiplication.
Binary Logic: Boolean algebra, Boolean functions, truth tables, canonical and standard forms, simplification of Boolean functions, Digital logic gates.

UNIT-II
Combinational Logic: Design procedure, Adders, Subtractors, Code Conversion, Analysis procedure, Multilevel NAND & NOR Circuits, XOR & XNOR functions Encoders, Decoders, Multiplexers, Demultiplexers and Comparators, Binary Parallel Adder, BCD Adder

UNIT-III
Sequential Logic: Flip-flops, Shift registers and Counters.
Memory System: Memory parameters, Semiconductor RAMs, ROMs, Magnetic and Optical storage devices, Flash memory.

UNIT-IV
CPU Organization: Processor organization, Machine instructions, instruction cycles, instruction formats and addressing modes, microprogramming concepts, and micro program sequencer.
I/O Organization: I/O interface, Interrupt structure, transfer of information between CPU/memory and I/O devices, and IOPs.

Text Books:

Reference Books:
MCA-103 DISCRETE MATHEMATICAL STRUCTURE

<table>
<thead>
<tr>
<th>Maximum marks:</th>
<th>100</th>
<th>External:</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td>3 hours</td>
<td>Internal:</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 8 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 24 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 14 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT –I

Groups and subgroups: Group axioms, Permutation Groups, Subgroups, Cosets, Normal Subgroups, Semigroups, Free Semi-groups, Modular Arithmetic, Grammars, Language, Regular Expressions, Finite State Machine.

UNIT –II

Graphs: Directed and Undirected Graphs, Chains, Circuits, Paths, Cycles, Connectivity, Adjacency and Incidence Matrices, Algorithms for determining Cycle and Minimal paths, Trees, Polish Notation, Flows in Networks.

UNIT –III

Lattices and boolean algebra: Relations to partial ordering, Lattices, Hasse Diagram, Axiomatic definition of Boolean Algebra as algebraic structures with two operations, Boolean Functions, Representing Boolean Functions, Switching Circuits, Gate Circuits.

UNIT –IV

Finite fields: Definition, Representation, Structure, Integral Domain, Irreducible Polynomial, Polynomial Roots, Splitting Field.

Text Books:

Reference Books:
1. Olympia Nicodemy, “Discrete Mathematics”, Cbs Publisher, Delhi
MCA-104 SOFTWARE ENGINEERING

Maximum marks: 100
Time: 3 hours
External: 80
Internal: 20

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 8 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 24 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 14 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

Unit-I

Unit-II
Software Project Planning: Cost estimation, static, Single and multivariate models, COCOMO model, Putnam Resource Allocation Model, Risk management, project scheduling, personnel planning, team structure, Software configuration management, quality assurance, project monitoring.

Unit-III
Software Design: Design fundamentals, problem partitioning and abstraction, design methodology, Cohesion & Coupling, Classification of Cohesiveness & Coupling, Function Oriented Design, and User Interface Design.
Coding: Programming style, structured programming.
Software reliability: metric and specification, Musa and JM reliability model, fault avoidance and tolerance, exception handling, defensive programming.

Unit-IV
Software Testing: Testing fundamentals, Functional testing: Boundary Value Analysis, Equivalence class testing, Decision table testing, Cause effect graphing, Structural testing: Control flow based and data flow based testing, loop testing, mutation testing, load, stress and performance testing, software testing strategies: unit testing, integration testing, Validation testing, System testing, Alpha and Beta testing, debugging.

Text Books:

Reference Books:
MCA-105 COMPUTER ORIENTED NUMERICAL AND STATISTICAL METHODS

Maximum marks: 100
Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 8 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 24 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 14 marks.
Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting One question from each Unit.

UNIT-I
Computer Arithmetic: Floating-point representation of numbers, arithmetic operations with normalized floating point numbers and their consequences. Error in number representation - pitfalls in computing.

UNIT-II
Numerical Differentiation and Integration: Differentiation formulae based on polynomial fit, Pitfalls in differentiation, Trapezoidal, Simpson's rules and Gaussian Quadrature.

UNIT-III
Interpolation and Approximation: Polynomial interpolation, Difference tables, Inverse interpolation, Polynomial fitting and other curve fitting. Approximation of functions by Taylor series and Chebyshev polynomials.

UNIT-IV
Statistical methods: Sample distributions, Test of Significance: Chi-Square Test, t and F test.
Analysis of Variance: Definition, Assumptions, Cochran's Theorem (only statement), One-way classification, ANOVA Table, Two-way classification (with one observation per cell).

Reference Books: